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Phase transitions are important in most areas of solid state science. They are
Interesting academically, e.g. a considerable slice of current research in solid state
physics concerns soft mode theory, which is one aspect of phase transitions, and
they are important technologically, e.2. in the synthesis of diamond from
praphite, the processes for strengthening of steel and the properties of fer-
tuelectricity and ferromagnetism. This chapter discusses structural, thermody-
hiimic and kinetic aspects of phase transitions and their classification. A few of
the more important phase transitions are described; others are mentioned
wlsewhere in this book.

I

12.1 What is a phase transition?

Il a crystalline material is capable of existing in two or more polymorphic
fms (e.g. diamond and graphite), the process of transformation from one
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sense, phase transitions are restricted to changes in structure only, without any
changes in composition, i.e. to changes in elements or single phase materials. A
much wider definition that is sometimes used includes the possibility of
compositional changes, in which case more than one phase may be present before
and/or after the transition. However, one then has to try and draw a dividing line
between polymorphic transitions, on the one hand, and chemical reactions, on

the other. The easiest solution is probably to try and avoid giving a precise

definition of phase transitions!

Phase transitions are affected by both thermodynamic and kinetic factors,
Thermodynamics gives the behaviour that should be observed under equilibrium
conditions and, for a particular material or system, this information 1
represented by the phase diagram. Phase transitions occur as a response 10 a
change in conditions, usually temperature or pressure but sometimes com-
position. The rates at which transitions occur ie. kinetics, are governed by
various factors. Transitions that proceed by a nucleation and growth
mechanism are often slow because the rate controlling step, which is usually
nucleation, is difficult. In martensitic and displacive phase transitions, nucleation
is easy, occurs spontancously and the rates of transition are usually fast.

12.2 Buerger’s classification: reconstructive and displacive transitions

We can begin with the classification scheme of Buerger (1961) which initially
divides phase transitions into two groups: reconstructive and displacive
transitions. Reconstructive transitions involve a major reorganization of the
crystal structure, in which many bonds have to be broken and new bonds formed.
The transition, graphite=diamond, is reconstructive and involves a complete
change in crystal structure, from the hexagonal sheets of three-coordinated
carbon atoms in graphite to the infinite framework of four-coordinated carbon
atoms in diamond, and vice versa. The quartz=cristobalite transition in SiO; |
also reconstructive because although there is no difference in coordination
between the two polymorphs—both structures are built of SiO, tetrahedr
linked at their corners to form a three-dimensional framework —the polymorph
have different types of framework structure and many Si—O bonds must bre:
and reform in order that the transition may take place. Because many bonds musl
break, reconstructive transitions usually have high activation energies a
therefore, take place only slowly.

Often, reconstructive transitions may be prevented from occurring, in whi¢
case the untransformed phase is kinetically stable although thermodynamically |
is metastable. A classic example is the occurrence of diamond at nor
temperatures and pressures. At 25°C and | atmosphere, graphite is the stab
polymorph of carbon, but for kinetic reasons the transition diamond — graphi
does not occur at detectable rates under ambient conditions.

Since there is often no structural relationship between two polymorp
separated by a reconstructive phase transition, there may also be no relati
between the symmetry and space groups of the two polymorphs. i
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Fig. 12.1 Transformation from structure A to any

other structure requires the breaking of first coordi-

nation bonds. Transformations among B, C and D
are distortional only. (After Buerger, 1961)

Displacive phase transitions involve the distortion of bonds rather than their
breaking and the structural changes that occur are usually small. For this reason,
displacive transitions take place readily, with zero or small activation energies,
and cannot usually be prevented from occurring. As well as a structural
similarity, a symmetry relationship exists between the two polymorphs such that
the symmetry of the low temperature polymorph is lower than, and belongs to a
subgroup of, that of the high temperature polymorph. Examples are provided by
the three main polymorphs of silica: quartz, tridymite and cristobalite, all of
which undergo displacive. low—high transitions. These transitions involve small
distortions or rotations of the SiO, tetrahedra, without breaking any primary
S1—O bonds.

The distinction between reconstructive and displacive phase transitions is
shown schematically in Fig. 12.1. In order to convert structure A into any of the
other structures, B, C and D, bond breaking is necessary and the transition is
reconstructive. On the other hand, interconversions between structures B, C and
I do not involve bond breaking but only small rotational movements. These
transitions are therefore displacive.

A more detailed and specific classification scheme, also due to Buerger, is given
in Table 12.1. First coordination refers to bonds between nearest neighbour
atoms (e.g. Si and O in SiO, tetrahedra), i.e. to the first coordination sphere of a
particular atom. Second coordination refers to interactions between next nearest
neighbour atoms (it is probably not true to regard these interactions as bonds),
¢.¢. between adjacent silicon atoms in a chain of corner-sharing SiO, tetrahedra.

Transformations involving first coordination may occur by two mechanisms:
(1) by completely disrupting the crystal structure of the original polymorph, as in
praphite==diamond, or (b) by a much more subtle and easier method involving
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Table 12.1 Classification of phase transitions

Type of transition Examples
1. Transitions involving first
coordination
(a) Reconstructive (Slow) Diamond = graphite

(b) Dilational (Rapid) Rock salt=CsCl
2. Transitions involving second
coordination
(a) Reconstructive (Slow)
(b) Displacive (Rapid)
3. Transitions involving disorder
(a) Substitutional (Slow)

(b) Orientational ;
d
Rotational RepiD

Quartz=cristobalite
Low=high quartz

Low=high LiFeO,

Ferroclectric=Paraelectric NH,H,PO,

4. Transitions of bond type (Slow) Grey—=white Sn

dilation. An example of the latter is the rock salt=CsCl transition which occurs
in several alkali and ammonium halides at high temperature and/or higl
pressure. Although the unit cell of rock salt is face centred cubic, Z =4, &
rhombohedral cell(a =b = c,x = f =y = 60°) that has one quarter the volume ¢
the cubic cell, with Z = 1, can be defined (Fig. 5.16). The rhombohedral cell i
primitive in that it has Na* ions at the corners and Cl ™ at the body centre (or vi
versa). If the rhombohedral cell is now compressed along its threefold axis, t
angle a increases above 60° until, when o = 90°, the structure has changed tot
of CsCl (Fig. 12.2). The crystal structures of rock salt and CsCl are therefo
interconvertible by this mechanism of dilation. A change in primary coord
nation number between 6 and 8 occurs. The bonds from chlorine to cations 2 to

Fig. 12.2 Displacive phase transition between (a) rock salt and (b)
CsCl structure types. Chlorine is octahedrally coordinate in (a) and
eight-coordinate in (b). The cations are numbered | to 8
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are unchanged but cations | and 8 move in and out of the first coordination
environment of chlorine. The degree of bond breaking is much less than for
reconstructive transitions; also there is no intermediate state of high energy
and hence transition rates are rapid. For example, CsCl transforms to the
rock salt structure above 479°C but on cooling the high temperature, rock
salt-like polymorph, it spontaneously reverts back to the CsCl structure. A
similar dilational mechanism may be postulated for the f.c.c.— b.c.c. tran-
sition that occurs in some metals, e.g. y— dMn at 1134°C; a— yFe at 910°C
and y— §Fe at 1400°C.

Transformations involving second coordination are reconstructive only if the
mechanism involves the breaking and forming of bonds of first coordination.
Thus quartz, tridymite and cristobalite all have three-dimensional network
structures built of corner-sharing SiO, tetrahedra and the structures differ in the
patterns of linkage of the tetrahedra, i.e. they differ in second coordination only.
In order to transform from one polymorph to another, however, it is necessary to
break and reform primary Si—O bonds.

Order—disorder transitions that involve atoms or ions exchanging places (i.c.
substitutional effects) are usually sluggish. The structures of ordered and disor-
dered polymorphs of LiFeO,, stable below and above ~ 700 °C, respectively, are
shown in Fig. 12.3. The disordered polymorph may be readily preserved to
room temperature where it is kinetically stable. It has a rock salt structure
with Li* and Fe** ions distributed at random over the octahedral sites of the
face centred cubic unit cell (Fig. 12.3b). On heating disordered LiFeO, at,
for example, 600°C, the oxide ion arrangement remains unchanged but the
cations order themselves over the octahedral sites (Fig. 12.3a), resulting in a
larger unit cell of lower symmetry (tetragonal). The ordering reaction involves
cation migration and takes place only slowly. As in all reconstructive tran-
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Flg. 12.3 (a) Ordered cation arrangement fn tetragonal LiFeO,; a=4.057, ¢ =
N 759 A. (b) Disordered cation arrangement in cubic LiFeO, with the rock salt
structure; a = ca. 4 A; M= Li* or Fe’*, at random
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sitions, however, the transition rates are very temperature dependent. The
ordering transition in LiFeO, is slow since 600°C is, relatively, a low tem-
perature. On the other hand, Li,TiO, exhibits a similar order—disorder tran-
sition based on the rock salt structure, but since the equilibrium transition
temperature is 1213 °C the ordering reaction in Li,TiO; proceeds very rapidly
on cooling below 1213°C. Thus, the disordered polymorph of LiFeO, may
be readily preserved to room temperature, but this is difficult to achieve with
Li;TiO;.

A good example of an orientational order—disorder transition is the
ferroelectric—paraelectric transition in NH,H,PO,. Displacement of hydrogen
atoms within —O—H—O— hydrogen bonds leads to an apparent change in the
orientation of PO,(OH), tetrahedra (see Fig. 15.17). In the low temperature
ferroelectric phase, these tetrahedra have a similar orientation, giving a net
alignment of dipoles, but in the paraelectric phase they are randomized. Since the
transition is accomplished by small displacements of hydrogen atoms, it takes
place easily and rapidly.

The fourth category in Buerger’s scheme involves transitions of bond type:

(a) grey=white tin, which involves a change from semiconducting to metalli¢
character;
(b) diamond=graphite, which is insulting to semiconducting.

]

However, in addition to the change in bond type, major structural changes
occur—in both tin and carbon, the primary coordination number changes at the
transition—and hence these transitions could also be included in category
1(a).

In summary, the dividing lines between the different categories of p
transition, as classified by Buerger, are not rigid and in some cases it is difficult to
decide how best to classify a transition. Nevertheless, the schemes of Buerge
have been extremely useful in providing a structural basis on which Lo
understand phase transitions.

12.3 Thermodynamic classification of phase transitions

Ehrenfest classified phase transitions into first order and second order b
considering the behaviour of thermodynamic quantities such as entropy, hea
capacity, volume, etc., on passing from one polymorph to the other through th
transition. At the equilibrium temperature (or pressure) of a phase transition, t
Gibbs free energies of the two polymorphs are equal: i.e.

AG=AH—-TAS=0

Therefore, no discontinuity in free energy occurs on passing from oni
polymorph to the other. A first-order transition is defined as one in which
discontinuity occurs in the first derivatives of the free energy with respect
temperature and pressure. These derivatives correspond to entropy and volu
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respectively, i.e.
dG
ar - S (12.2)
and
dG v
T (12.3)
from
H=U+PV (12.4)

Usually, first-order transitions are easy to detect. A discontinuity in volume
corresponds to a change in crystal structure such that the density and the unit cell
volume per formula unit are different in the two polymorphs. The change in
volume may be followed by dilatometry (also called thermomechanical analysis)
or sometimes by visual observation, e.g. the increase in volume associated with
the tetragonal to monoclinic transition in ZrO, causes bodies containing
letragonal zirconia to shatter. Associated with a change in volume there is
usually a change in enthalpy, AH (equation 12.4), which can be detected by DTA,
Chapter 4; exothermic or endothermic peaks are observed as the transition
proceeds. Direct measurement of entropy changes are less easily made but can

also be inferred by the occurrence of DTA peaks: at the transition temperature,
AG =0 and, therefore,

_AH
T

or by X-ray diffraction studies in the case of order—disorder transitions. Some
cxamples of first-order phase transitions and their thermodynamic characteris-
lics are given in Table 12.2.

Second-order transitions are characterized by discontinuities in the second

derivatives of the free energy, i.e. in the heat capacity, C,, thermal expansion, a,
and compressibility, fi:

AS (12.5)

#6_ov_ 3
Pz =op, P U9
26 _ov_,

9POT 0T,  ° (23}
i(i:_a_s_"cv

Tz AT, T (128)

Higher order transitions can be defined, in principle, by differentiating further.
Detection of second-order transitions is not so easy as for first-order ones since
the changes involved are usually much smaller. The best method is probably to
measure heat capacities, by calorimetry. Heat capacities usually increase as the
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Table 12.2 Characteristics of some first-order phase transitions. (Taken in part from a compilation by Rao and Rao, 1966)

AH(kJmol 1)

AV(cm?®)

T(°Q)

Transition

Compound

0.360
2424

1.33

10.3
—22

573
479

Low=high

CsCl structure=rock salt structure

Quartz, SiO,

CsCl
Agl

6.145
4.473

145

b.c. cubic structure

—_
—

Waurtzite structure

3.678

28.842
1.463

3971
2717

3.81
6.0

312
3.13

7.1
9.5

196
179
590
166
228
278
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Fig. 12.4 (a) to (f) Thermodynamic properties of phases and (g)
to (i) variations in these properties at first-order phase
transitions

(ransition temperature, T,, is approached and show a discontinuity at T,
(equation 12.8).

The temperature dependences of various thermodynamic functions in a
polymorphic material are shown in Figs 12.4 and 12.5.1n 12.4(a), the enthalpy H,
of polymorph | is shown as being temperature independent, although in practice
this is not strictly true. In Fig. 12.4(b), a temperature independent entropy S, is
assumed which, again, is not strictly true in practice. This leads to a linear
decrease in — T'S; with increasing temperature (Fig. 12.4¢). In Fig. 12.4(d), the
entropy is shown as being markedly temperature dependent, especially at higher
lemperatures. This behaviour is characteristic of structures which experience
some disorder with rising temperature. Consequently, — T'S, decreases increas-
ingly rapidly with rising temperature (Fig. 12.4¢). For most materials, (a) and (e)
ure fairly good representations of their behaviour. These then give rise to a free
energy that decreases increasingly rapidly with rising temperature (Fig. 12.4f).

In materials that are polymorphic, each polymorph has its own G-T curve, e.g.
Gy and Gy (Fig. 12.4g); by definition, the polymorph that is stable under a
particular set of conditions is the one of lower free energy, i.e. polymorph I at
lemperatures below T, and polymorph II above T,. The two curves cross over at
the equilibrium transition temperature, T, at which G, = G (equation 12.1). The
entropies of polymorphs I and II are given by the slopes of the G-T curves, i.e.
UG/dT= —S. Hence, it follows that polymorph II has a higher entropy than
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Fig. 12.5 Thermodynamic properties of phases involved in
second-order phase transitions

polymorph I,ie. — TSy < — TS;. From equatiog (12.5) polymorph II must a}lsq
have a higher heat content than polymorph L, ie. H;< H,,.. Broadly sPeakxng,
then, the polymorph which is stable at lower temperatures 1s the one with both
the lower heat content and the lower entropy. Figures 12.4(h) and (i) show that
discontinuities in H and S occur at T, since although AG =0, AH = TAS #0;
these are the characteristics of a first-order phase transition. In order to gel
transformation from a low to a high temperature polymorph the la'tcnl heat 0!
transformation, AH, must be provided. This explains a general principle of DT
that, on heating, transformation from one stable polymorph .to another
endothermic and the reverse transition, on cooling, is exothermic (Cl}apter 4)
At a first-order transition, the G- T curves for the two polymorphs (Fig. 12.‘4
intersect. This cannot be so for a second-order phase transition anc.l .the graphic
and thermodynamic representation of second-order phase transitions present
some difficulties. Since, for a second-order transition, there is no discontinuity i
entropy at T, the slope of the G-T curves (dG/dT= — S) for polymorphs Iand |
must be the same at T.. Attempts to represent this graphically are shown |
Fig. 12.5(a) and (b). Situation (a) is satisfactory from tt.le point of view that
tangents to curves I and II at T, are parallel and coincide (hence AS =8y
S;=0), but it is unsatisfactory because polymorph II always has the lower {r¢
energy and hence no reversible transition betw'een I and IT could ever !
observed! This problem is partly overcome in Fig. 12.5(b), but at the cost.
distorting the G—T curve of polymorph IT and/or that of polymorph I so that the
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are parallel in the region of the transition temperatures. Since the G—T curves of
polymorphs I and II are independent of each other, it seems too much of a
coincidence that one curve should distort over exactly the temperature range that
corresponds to a phase transition.

A way out of thisimpasse in trying to represent second-order transitions comes
from a consideration of the changes in thermodynamic properties for a practical
example. Many order—disorder transitions are second-order transitions.
Consider an alloy A,B, that is ordered at low temperatures but whose crystal
structure is disordered (i.e. A and B atoms are placed at random) at high
temperatures, > T.. At low temperatures, below T, the alloy exhibits long range
order (LRO) in which, for instance, the A atoms prefer a certain set of sites
throughout the crystal. At absolute zero, the alloy must be perfectly ordered and
hence LRO is complete. As the temperature rises, atoms begin to disorder and
change places; hence the LRO decreases. This process continues increasingly
rapidly as temperature increases until, at T, the LRO has disappeared altogether
(Fig. 12.5¢). Above T, only short range order (SRO) exists. In SRO, A atoms may
prefer to be surrounded by B atoms, and vice versa, but this gives rise to regions
that are ordered only on a very small scale. Disorder may be equated to entropy
and it can be seen that, although an enormous increase in entropy occurs between
0K and T, there is no discontinuity in entropy at T,. Such a transition may be
regarded as a second-order transition.

Consider now the form of the G—T curves for the ordered, I, and disordered, 11,
polymorphs in Fig. 12.5(c). These are shown schematically in Fig. 12.5(¢). The
dashed extension for curve 11 represents the disordered polymorph that has been
supercooled to temperatures below T,. However, it is impossible to do the reverse
and superheat polymorph I above T, because the process of continuous
transition from I to II that begins at absolute zero has terminated at T..
Temperature T, represents the upper temperature limit of existence of I and, in
this sense, it is a critical point, as, for example, the water—steam critical point. A
thermodynamic theory due to Tizza treats phase transitions as critical points.
The crucial difference between Fig. 12.5(e) and (b) is that, whereas it is possible to
supercool II in both cases, it is impossible to superheat 1 in Fig. 12.5(e).

Thus far, the distinction between first order and second order transitions is
clear cut and is based on thermodynamic principles. In practice, however, many
(ransitions do not belong simply to one category or the other but may have
hybrid character. This is illustrated graphically in Fig. 12.5(f). At some tempera-
lure well below T, there is a clear difference between the enthalpy of polymorph
I, H, and that of undercooled polymorph II, H (dashed line). On heating, the
enthalpy of polymorph I shows a gradual, anomalous increase until, at
lemperature T, H; = Hy;. How are we to regard this transition? It is clearly not
lirst order since at T, H; = Hy,. It may be possible to regard the change at T, as a
second order transition, especially if there is a discontinuity in C,, as shown in
Iig. 12.5(g). This is not very satisfactory, however since the classification of this
(ransition as second order, based on its behaviour at T, ignores completely the

lurge, anomalous increase in H, below T..
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A further way of classifying transitions which is both interesting and useful is
that proposed by Ubbelohde. In this scheme, transitions are grouped into
continuous and discontinuous. A continuous transition is one such as shown in
Fig. 12.5(f): there is no discontinuity in enthalpy at T,, but perhaps more
importantly (and not shown), the crystal structure changes smoothly and
continuously from that of polymorph I to that of polymorph II. A discontinuous
{ransition is one such as quartz—cristobalite or diamond—graphite. In these, the
structures of the two polymorphs are quite clearly different and it is not possible
for the structure to change smoothly from one polymorph to the other.

Returning now to first and second order transitions, these represent extreme,
ideal cases. Both are concerned only with the changes in thermodynamic
properties at T.. In practice, first order transitions usually show some ‘pre-
monitory’ phenomena, such as an increase in disorder, as T, is approached.
However, such effects may be conveniently ignored, especially if there is a large
change in enthalpy at T.. In second order transitions, especially of the type
order—disorder, almost all of the changes in structure and thermodynamic
properties are associated with the ‘premonitory’ changes below T and surely
cannot be ignored. For these, T, merely represents the temperature at and above
which the structural changes are complete.

In conclusion, then, most transitions, of whatever kind, show premonitory
phenomena, which appear as an increase in heat capacity or a baseline drift on
DTA, as T, is approached (Fig. 12.5g). These premonitory phenomena may
terminate with a discontinuity in e.g. enthalpy or LRO at T, in which case the
transition is first order and discontinuous. Alternatively, if the transition did not
take place with a discontinuity at T, then behaviour similar to that shown in
Fig. 12.5(c) would be observed, with a continuous or second order transition at
an extrapolated temperature T (dashed line, F ig. 12.5d). We can see therefore,
that premonitory phenomena, such as increasing disorder or defect con-
centrations, as T, is approached, provide the link between first-order and seconds
order transitions. Premonitory phenomena also mark the onset of a continuous.
transition that may or may not be interrupted by a discontinuity.

A favourable philosophical point among physicists concerns the changeoyer
from first-order to second-order behaviour: as a transition becomes increasingly
second order in character, so the enthalpy of the transition at T, decreases, but at
what stage does this enthalpy become zero? Even though a transition has an:
extremely small AH, it must retain some first order character.

Many transitions that show finite or infinite discontinuities in C, at 1}
(Fig. 12.5g and h) are called lambda transitions, because the shape of the C, cury
resembles the Greek letter lambda. These are second-order transitions, if t
change in C, is finite (Fig. 12.5g), but are first order if AC, is infinite (Fig. 12.5h
An example of a lambda transition is the low-high transition in quartz at 573"
(Fig. 12.6). Changes in AH and AV occur at 573 °C, as given in Table 12.2, ang
therefore the transition has some first-order character. The rapid increase in
between ~ 500 and 573 °C shows the premonitory disordering effects that oce
prior to the transition at T..
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Fig. 12.6 Specific heat of crystalline quartz. (From Moser,

1936)

Most attention is given in this chapter to transitions that occur as a
consequence of changing the temperature, but pressure-induced phase tran-
sitions also occur; some examples are given in Table 12.3. All of these transitions
are accompanied by a decrease in volume and provide examples of the relevance
Qf Le Chatelier’s principle. In pressure-induced phase transitions, the effect of
increased pressure is to cause a change in crystal structure such ihat the high
pressure polymorph has a higher density and hence smaller volume than the logw
pressure Po]ymorph. Schematic free energy-pressure diagrams may be con-
s!ructec? snmilal" tothe G-Trelations given in Figs 12.4 and 12.5. For example, the
(,-Tdiagramin Fig. 12.5(g) would be replaced by acompressibility—P diagr;xm

The pressure dependence of phase transitions as a function of temperature is:

piven by the Clausius—Clapeyron equation, which i itati
. A ch is a quantitative stz
l.e Chatelier’s principle: : L i

dP AH
dT~ TAV )
Table 12.3 Some pressure-induced phase transitions.(Data taken from Rao and Rao, 1966)
('ompound Transition Pk bars) AV(em)® AH(kJmol )
KCl Rock salt to CsCl structure 19
' 6 —4,
Kbr Rock salt to CsCl structure 180 - 765
RbCI Rock salt to CsCl structure 57 ~ 695 3.39
7n0 Wartzite to rock salt 886  —255 19.23
510, Quartz to coesite 18.8 — 2.0 2'93
o Coesite to stishovite 93.1 — 6‘6 57'27
(.ll {10 3 llmenile to perovskite 404 = 2:9 15.88
I'eCr,0, Spinel to Cr,S, structure 36.0 —6.5 - 30.51

I'vansitions are at room temperature. P, is the critical transformation pressure.
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12.4 Applications of G-T diagrams; stable phases and metastable phases

Plots of free energy against temperature, Figs 12.4 anfi' 12,5, are a usefu} and
simple way of representing the polymorphism and stability or metastability of
phases. The free energy axis is always schematic because, only rarely, are
sufficient free energy data available with which to construct a quantitative
diagram. However, transition lemperatures arc usually known accurately,
together with the order of stability of the different polymor.phs, fmd ‘hence the G-
T diagrams are qualitatively correct. Some examples are given in Fig. 102.7. In(a)
is shown the f=a transition in Agl which occurs at 145°C. Be.:low 145 C B-Agl
has lower free energy and is stable; above 145°C, ot_-AgI is the equnllbnuql
polymorph. Dashed lines represent metastable extensions of stable states; (i)
represents superheated f and (ii) supercooled a. Nen!her (?f these me.tasufble states
is long-lived since the transition takes place rapidly in both dlI‘CCIlOIlS'. T?le
arrows indicate that if it were possible to prepare either polymorph outside l‘ts
range of stability, it would revert to the stable form, witha cc_msequent decreasein
free energy. This transition is important in the field gf solid elcclrolytes_. Much
time has been spent studying doped Agl materials with the hppe that elthe?r (a)
the = f§ transition temperature can be lowered so that the highly conducting &
phase is stable to lower temperatures, especially to room temperature, or (b) the

(a) (o) Ca, 510,
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Fig. 12.7 Free energy—temperature diagrams showing polymorphism
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kinetics of the a— f transition can be modified so that the a form could be
quenched to room temperature without transforming to § during cooling.
Success has been achicved with several systems, the best known of which is
RbAg,Is. Both effects (a) and (b) are observed since the a=f transition
temperature is reduced from 145 °C in Agl to 27 °C in RbAg, 1 and the transition
f[rom « to # occurs only slowly below 27 °C and needs the presence of free iodine
to act as a catalyst.

- G-T diagrams can represent liquid as well as crystalline substances, as shown
for Li,Si,Os (Fig. 12.7b). Lithium disilicate, Li,Si, O5, melts at 1032 °C and the
rather viscous liquid that forms can be readily undercooled without crystallizing.
With decreasing temperature, the viscosity of this supercooled liquid increases
until the glass transformation temperature, T,, is reached, below which the liquid
freezes to a rigid, amorphous glass. (Some people claim that the glass transfor-
mation is an example of a second-order phase transition.) At room temperature,
then, Li,Si,Os can exist in two forms, as crystals or as glass. Since the glass has
higher free energy it is metastable and will crystallize, provided the conditions are
kinetically favourable. This metastability of glass, and its subsequent crystalli-
zation on heating at high temperatures ( ~ 450 to 700 °C), forms the basis of the
manufacture of glass-ceramics (pyrosil, pyroceram, slagceram, etc)). Glass-
ceramics withstand high temperatures, unlike most glasses which soften or
crystallize, and are resistant to thermal shock (see Chapter 18). Figure
12.7(b) is somewhat simplified in that crystalline Li,Si,O5 undergoes minor
polymorphic phase transitions at ~970°C, but these have been omitted for
clarity.

Examples of phase transitions that must be avoided if possible are the o' — 7y
and f—y transitions in Ca,SiOy,, which is present as a major constituent of
cement. Under equilibrium conditions, the «’ polymorph of Ca,SiO, should
transform to y below 725 °C (Fig. 12.7c). However, with rapid cooling and/or the
addition of suitable additives, the &’ — y transition does not occur and, instead,
undercooled o’ transforms to # below 670 °C. -Ca,SiO, is entirely metastable
since at all temperatures over which it can exist it has a higher free energy than y-
("a,8i0,. f-Ca,Si0, is one of the major components of Portland cement clinker
und it sets hard on reaction with water. On the other hand y-Ca,SiO, has very
little cementitious value and, hence, in the manufacture of Portland cement,
transformation to give the y polymorph must be avoided.

A material with a complex G—T diagramis silica, SiO,. The equilibrium forms,
s a function of temperature, are: :

§B'C_ g0°C | N l 1470 C
Low quartz = high quartz = high tridymite =

o ” ! 1710°C g X
high cristobalite = liquid

The three main crystalline polymorphs, quartz, tridymite and cristobalite, all
undergo high—low transitions on cooling, but both low tridymite and low
uristobalite are entirely metastable relative to low quartz (Fig. 12.7d). Once
formed, however, both tridymite and cristobalite are kinetically stable outside
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their ranges of equilibrium existence (i.c. below 870 and 1470 °C, respectively) and
their subsequent conversion to quartz on lowering the temperature proceeds
only slowly because these transitions are reconstructive. Silica glass can be
prepared by supercooling silica liquid. The glass transformation temperature, T,
is high, ~ 1200°C. Silica also forms high pressure polymorphs, coesite and
stishovite, but these do not appear on Fig. 12.7(d).

With complex G- T diagrams, such as Fig. 12.7(d), it is often difficult to show
the transition points clearly. In order to make the drawings clearer, some authors
use diagrams such as Fig. 12.7(¢) in which each G-T curve is shown as being
concave upwards, rather than concave downwards as in Fig. 12.7(d). While the
drawings are certainly clearer, they are thermodynamically incorrect and their
use is not to be encouraged. For instance, the G-T curve for each polymorph
must become horizontal as absolute zero is approached since dG/dT = — S and
S—0 at 0K. Figure 12.7(¢) shows the opposite of this.

All the examples considered in Fig. 12.7 are for one-component systems in
which all polymorphs have the same composition. Similar representations can
be used for multicomponent systems although it becomes more difficult to show
the effect of three variables— G, T, composition—on a single diagram. One
application in multicomponent systems is in the phenomenon of spinodal
decomposition, which is an important effect associated with liquid immiscibility
(Chapter 18).

DTA may be used in favourable circumstances to distinguish between phases
that are stable and metastable. The change from one stable polymorph to
another on heat’ag should appear on DTA as an endothermic event. The change
from a quenched, metastable polymorph to a stable polymorph on heating
should appear as an exothermic event. An example would be the crystallization
of Li,Si,O5 glass on heating; crystallization would occur at ~600 to 800°C
and give an exotherm on DTA (Fig. 4.7b).

12.5 Ubbelohde’s classification: continuous and
discountinuous transitions

|

. As mentioned in the previous section separation of phase transitions into fir§
order and second order according to thermodynamic principles is fine i
theory but does not work so well in practice because many transitions have i '
intermediate character. An alternative scheme, due to Ubbelohde (1957
classifies transitions into two groups, continuous and discontinuous. Broad
speaking, discontinuous and continuous transitions correspond to thermody
namic first- and second-order transitions, respectively. Ubbelohde’s scheme has
been particularly useful for transitions that experimentally involve only mino:
structural changes. In many cases, these transitions proceed by the formation @
‘hybrid crystals’ in which domains of the product phase grow inside the par
crystal. At the interface between parent and product crystals, one or both ph
will be in a stressed condition since it is unlikely that the molar volume of the (W
phases is identical. The free energies of the two phases are therefore modified by
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strain energy term & and this leads to a modified phase rule in which the strain
energy contributes an extra degree of freedom:

P+F=C+2+)n

where ) 7 refers to the number of additional degrees of freedom introduced (as
well as strain energy, surface energy may also be important, there by contributing
a further degree of freedom). Some transitions have been studied directly by high
temperature single crystal X-ray diffraction and the presence of hybrid crystals
observed over a range of temperatures. Using the modified phase rule, these
observations may be rationalized and it is not necessary to invoke any violations
of the phase rule. It seems highly probable that there is a close relation between

the occurrence of hybrid crystals and the phenomenon of martensitic transfor-
mations (Section 12.8.2).

12.6 Representation of phase transitions on phase diagrams

Phase diagrams are treated systematically in Chapter |1. Some further points

rcgafding the representation of phase transitions on phase diagrams are worth
making here:

(a) In one-component systems, e.g. C, SiO,, which are subjected to changes in
temperature and pressure, first-order phase transitions represent univariant
conditions. From the phase rule, for a one-component system, P+ F =
C + 2 =3. At the transition point, two phases are in equilibrium, P =2
and so F = 1. The transition temperature therefore changes if the pressure is
varied, and vice versa, e.g. Figs 11.3, 11.4 and 11.5. The condensed phase
rule, P+ F = C + 1, is used in condensed systems where the vapour phase
is unimportant and for transitions that take place at fixed (often ambient)
pressure. In such cases, first-order transitions occur at fixed temperatures,
i.e. at invariant points.

(b) In two-component solid solution systems that exhibit phase transitions,
addition of the extra component, composition, generates, from the phase rule,
an extra degree of freedom. Whereas two phases coexist at a fixed point in a
condensed, one-component system, two phases may coexist over a range of
temperatures in a binary solid solution (Fig. 11.18a). These two phase
regions, such as « + f§, must be present in theory, although in practice they are
sometimes narrow and difficult to detect.

(c) Second-order phase transitions, strictly speaking, cannot be represented on
equilibrium phase diagrams. In a second-order or continuous transition, the
critical temperature represents the condition under which the low—high
transition is complete. At no stage do two phases coexist in equilibrium. Since
P =1 throughout, it is impossible to represent a second-order phase
transition on a conventional phase diagram because the latter demands that,
at a transition point, P = 2, It is necessary, of course, to be able to represent
such phase transitions and this may be done by using a single curve to



434

represent the variation of transition temperature with, for example,
composition.

12.7 Kinetics of phase transitions

Thermodynamics tells us the temperature (and pressure) at which a transition
occurs under equilibrium conditions but gives no information about the rates at
which transitions occur. The latter is the subject of kinetics. The rates at which
transitions occur vary enormously. At one extreme are transitions that take place
very rapidly in both forward and back directions and without any hysteresis (i.e.
the transition temperature is the same on heating and cooling). At the other
extreme are transitions that occur only on geological timescales; e.g. obsidian, a
glassy mineral, should transform to one of the crystalline forms of SiO, but
clearly, from the occurrence of obsidian as a mineral, the transition rates are very
slow. Most transitions are intermediate between these extremes and occur with
some hysteresis, i.e. the high temperature polymorph may be undercooled to
varying degrees before transforming to the low temperature polymorph.

Transition rates vary enormously and are controlled by several factors. In
Fig. 12.8 the temperature dependence of the rate of transition between a low
temperature polymorph, I, and a high temperature polymorph, II, is shown
schematically. Rates are slow in either direction at temperatures that are close to
the equilibrium transition temperature, T, (region A). Since AG ~ 0 close to T,
there is little driving force for the transition to occur in either direction. At
temperatures further removed from T, reaction rates increase (regions B, C). A
maximum in the rate of the 11— 1 transition may occur at a certain degree of
undercooling, at Ty, and if it is possible to undercool the high form IT to below Ty,
then the rate of the IT— I transition again decreases (region D). If the maximum

RATE

TEMPERATURE

Fig. 12.8 Temperature dependence of the transition rates for a
typical first-order transition between a low temperature poly-
morph, I, and a high temperature polymorph, II
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cannot be detected experimentally, then the I1— I transition rate continues to
increase (region C’), although, in theory, a maximum may still occur at some
lower temperature. There is no corresponding maximum in the I — I1 transition
above T.; instead the rate increases increasingly rapidly (region B).

The general form of Fig. 12.8 and the occurrence of the maximum at Ty, may be
understood by considering the combination of (a) the effect of temperature on
reaction rates, as given by the Arrhenius equation and (b) the relative free energies

of the polymorphs I and 11 as a function of temperature. These two effects are as
follows:

(a) The Arrhenius equation, as applied to kinetics, is of the form:

Rate = A4 cxp(}—?)

where E is the activation energy of the transition. This equation predicts a
rapid increase in rate with increasing temperature, as observed in regions D
and B of Fig. 12.8. The usual method of analysing results in terms of the
Arrhenius equation is, of course, to take logs:

(12.10)

log, grate = log, A —:—Tlog,oe (12.11)
and plot log,, rate against |/T. If the data fit the Arrhenius equation, a
straight line is obtained of slope ( — E/R) log, se and intercept (extrapolated)
equal to log, 4.

(b) The magnitude of the difference in free energy AG,, between the two
polymorphs I and II gives a measure of the driving force for the transition to
occur (Fig. 12.9). At T,, G, =G, and there is no driving force for the
transition to occur in either direction (Fig. 12.9a). At any other temperature,
Gy # Gy and the transition takes place preferentially in one direction
(Fig. 12.9b). For idealized transitions in which H and S of the two
polymorphs are independent of temperature (Fig. 12.4a and b), the magni-

(a) (b)

T=Tc Tr=smc

TRANSITION
STATE

-

G G
G I
I Gy G

Gy
Fig. 12.9 Difference in free energy between polymorphs I and II
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tude of AG,_y at temperature T is a simple function of the difference in
temperature (T, — T):

AG, y=AH, ,, — TAS, (12.12)

=(T.—T)AS;.u (12.13)
or
ARG Tc; LN (12.14)

Both factors (a) and (b) outlined above are important in controlling the rates at
which phase transitions occur. Qualitatively, factor (b) is dominant at tempera-
tures close to T, where there is little thermodynamic driving force for the
transition to occur. At temperatures further away from T, however, factor (a)
becomes more important, especially in regions D and B of Fig. 12.8, where the
transition rate increases increasingly rapidly with rising temperature.

Difficulties arise when attempts are made to quantify the effects of factor (a)
and, especially, factor (b). The traditional approach is to relate the: thermoc.ly-
namic driving force, given by AG, _y, factor (b), to the problem of forming nuclei of
the product phase. Most first-order or reconstructive transitions take place b)‘f a
mechanism of nucleation and growth, in which the slow step is the initial
nucleation of the product phase. Although the theory of nucleation‘ is well
developed, it is difficult, if not impossible, to apply it quaptitatively since the
magnitudes of certain parameters, such as the surface energies of nuclei, are not
known. This theory is now briefly described.

12.7.1 Critical size of nuclei

Let us begin with a phase which is in its field of thermodynamic stability,
Transformation or reaction to give another polymorph cannot occur to any
appreciable extent, because this would lead to an overall increase in [ree energy
(e.g. transformation in the direction I1—1I in Fig. l2.9b).. .

Suppose now that the conditions, T or P, of the ongu_lgl ‘polymor.ph are
changed so that it moves outside its field of equilibrium existence,
Transformation to a polymorph of lower free energy must the:refo_re oceur
according to thermodynamics, but if the transformation mechanism is one o(
nucleation and growth then, for kinetic reasons, the rate of transformation may.
be very slow. In such a mechanism, small nuclei of the product phase.fc.»r
initially, either at the surface and/or throughout t.he bulk pf the on_gmll]
polymorph, and these nuclei subsequently grow. The difficulty .W.lth nucle?.tlop
that nuclei have surfaces and their surface energy makes a positive contnbut}o
to the free energy of the system. The net change infree energy, AG,, on nucleatio
is therefore a combination of a decrease in free energy due to formation of {
product phase in the nuclei and an increase in free energy 'due to th-e surf
energy of the nuclei. A strain energy term may also be present if the starting ph
and product have different volumes; here we assume AV =0 and the str
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Fig. 12.10 Change in free energy of nuclei as a function of raduis

energy is zero. Let us assume that AG, represents the free energy per unit volume
of the nucleus relative to the parent phase and AG, represents the surface free
energy per unit area of the nucleus. For a spherical nucleus of radius r,

AG, =4nr’AG, — 3$nr3AG, (12.15)

For small values of r, AG, is positive since 4nr*AG, > $nr*AG, (Fig. 12.10), but
with increasing r, AG,, passes through a maximum AG, at r = r_, and decreases to
zero atr =rp. Forr > r,, AG, is negative. This then gives rise to the notion that a
nucleus should have a certain minimum size in order for it to be stable. At first
sight, it might be thought that r represents the critical radius of the nucleus,
above which the nucleus is stable because AG, is negative. Kinetically, however,
thecritical radius corresponds to r, since for r > r_, AG, decreases with increasing
r. In order to understand this, consider a nucleus of intermediate radius, ryx and
free energy + AGx. While such a nucleus is unstable thermodynamically, it is
stable kinetically since, if it were to start dissolving, r would decrease and the free
energy would begin to rise towards the value AG,.. Once nuclei of size r > r, form,
therefore, they are kinetically stable and continue to grow. In fact, nuclei of radius
Iy, where r, <rx <rp, are metastable since they require an activation energy,
given by AG.— AGy, for their dissolution, whereas nuclei of size r <r_ are
unstable since they have no activation barrier to their dissolution; nuclei of size r
- Iy are stable.
The value of r, (Fig. 12.10) occurs when dAG/dr =0; ie.

L 8nrAG, — 4nr’AG,
dr
und
2AG
= 12.1
P r G. (12.16)

The critical excess free energy, AG,, is given by substituting r, into equation
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fc
Te TEMPERATURE
Fig. 12.11 Critical size of nuclei as'a function of temperature
(12.15), i.e.
16 nAG?
AG,=——3 12.17

We can now see why nucleation is difficult at temperatures close to T. Since AG,
—0as T— T, then, from equations (12.16) and (12.17), both r. and AG_ become

increasingly large as T, is approached. The variation of r. with temperature i§

given by substituting equation (12.14) into (12.16), i.e.
prle 2AG,T,
© (T.—T)AH
A plot of 7! against T (Fig. 12.11) should be linear, intersecting the T axis at T}

as r— c0. The two lines on Fig. 12.11 correspond to the two transformation
directions, I=II.

(12.18)

12.7.2 Rate equations

12.7.2.1 Nucleation rate

Nuclei of the product phase form as a consequence of the thermal motion
atoms; the rate of nucleation is given by

R=Aexp[w1| (121
|

The overall activation energy, AG, + AG,, is a combination of the critical fr
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TEMPERATURE
Fig. 12.12 Effect of temperature on nucleation rate, R

energy, AG,, which must be surmounted in order for the nuclei to be stable and
the activation energy, AG,, for the individual atomic jumps involved in
nucleation. Since AG, is temperature dependent, equations (12.17) and (12.14),
the nucleation rate, R, varies with temperature as shown in Fig. 12.12. For
transformation in the direction II = I, R passes through a maximum at a certain
(emperature Ty, below T, and tends to zero both at 0 K and at T.. For
transformation in the direction I1—1I, R increases rapidly with temperature
above T..

There is considerable evidence that equation (12.19) and Fig. 12.12 represent,
at least qualitatively, the kinetics of nucleation in many transitions. However, it is
difficult to measure nucleation rates experimentally and test the theories. Part of
the difficulty is that nucleation is very dependent on the presence of impurities,
dislocations, surfaces, etc. It is possible to distinguish two types of nucleation.
lHomogeneous nucleation occurs when all parts of the parent phase are identical.
This is a random process and depends only on thermal fluctuations in atomic
positions. Usually, however, it is much easier for heterogeneous nucleation to
occur in which nucleation takes place preferentially at defect centres and sites of
higher local free energy.

12.7.2.2 Overall transformation rate— Avrami equation

Experimentally, it is much easier to measure the overall rate of transformation
than to try and isolate the nucleation and growth stages, especially if the
substance under study is a powder. Many data are analysed using the Avrami
equation (also called the Avrami—Johnson—Mehl-Erofeev equation):

o =1—exp(—ko)" (12.20)

in which o is the volume fraction of the product phase, k is the rate constant and n
is a constant whose value depends on the nature of the nucleation and growth
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process. Values of n and k may be obtained by taking logs twice:

log~log(l—i—a)=nlogk+nlogl+log'loge (12.21)

and plotting log-log [1/(1 — )] against logt. :

Use of the Avrami equation provides a convenient way of treating experimen=
tal data; no assumptions are needed initially and in favourable cases, e.g. if an
integral n value is obtained, then insight into the transformation mechanism may
be obtained. Thus, for polymorphic transitions, n = 3 may indicate a mechanism
in which nucleation occurs only at the start of the transformation whereas n = 4
indicates that nucleation continues to occur in untransformed material. In
situations where it is not possible to evaluate the significance of the n value that i§
obtained, the Avrami analysis does nevertheless give a value of the rate constant
parameter k. If measurements on the transformation rate are made over a range
of temperatures, an activation energy may then be obtained from an Arrhem\fs
plot of log k against T~ '. An example is shown in Fig. 12.13 for the polymorphml
transition f=y in Li,ZnSiO,. The kinetics were studied over a large lemperatureI
range, 480 to 940 °C, and in both transformation directions. At temperatures wel)
below T, 883 °C, the data fall on a straight line and give an activation energy 0 !
185kJ mol L. Between 780 and 950 °C, however, the transformation rates are
reduced, especially in the region of T.. This result serves to emphasize th
importance of thermodynamic factors, i.e. the relative free energies of the tw¢

polymorphs, to the kinetics of phase transitions. y
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Fig. 12.13 Arrhenius plot for the rate of transition =y in Li,ZnSiO,. (Data
from Villafuerte-Castrejon and West, 1981)
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Fig. 12.14 Time-temperature-transformation (TTT) diagram for the
transition f=y in Li,ZnSiO,

12.7.2.3 Time—temperature—transformation (T TT) diagrams

In experimental studies on phase transitions, one is often interested in a general
knowledge of reaction rates as a function of temperature without being
particularly concerned with details of the mechanism or the correct rate equation
to use. It is then convenient to plot kinetic data as TTT diagrams, in which the
lime taken to achieve a certain degree of conversion, say 25 per cent, is
ascertained over a range of temperatures; a graph of temperature against log time
is constructed. As an example, data for the f=y transition in Li,ZnSiO,
(Fig. 12.13) are replotted as a TTT diagram (Fig. 12.14) for 25, 50 and 75 per cent
conversion. The graphs show that transition rates for the y— f§ direction pass
through a maximum at ~ 1060K (i.e. ~790°C) and that at ~ 1150 K, transition
rates are extremely slow in either direction. A rapid increase in the rate of f— 7
Iransition occurs above ~ 1180 K.

TTT curves similar to Fig. 12.14 have been observed in many metals and
illoys. They are probably characteristic of many inorganic phase transitions as
well.

12.7.3 Factors that influence the Kinetics of phase transitions

In most books on kinetics, attention is focused on reactions in the gaseous and
liquid states with barely a mention of solids, apart from the use of solids to
catalyse liquid and/or gaseous reactions. The reason for this is not that reactions
involving solids are unimportant—they obviously are extremely important—
but that solid state reactions are highly complex; rigorous, quantitative
interpretation of the results of such reactions is difficult, if not impossible. For
example, the concept of reaction order, which is a central, indispensable feature of
the study of gaseous reactions, is meaningless in most solid reactions.
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Although this chapter is concerned with phase transi'tior.ls and not with solid
state reactions in general, the factors that influence the kinetics of the two types of
process are very similar. Phase transitions are usually simpler than solid state
reactions for two reasons:

(a) There is usually no change in composition of the pl‘la‘ses during a phase
transition; in solid state reactions, however, compositional changes' must
ocecur and the diffusion of ions through solids is an important factor in rate
studies. ' ! -

(b) Liquid and gas phases are usually not important in phas? transitions, unl.ess‘
they have catalytic effects on the transition rates. In re'flctlons between solids,
however, liquid and gas phases are often important, either because gases ar¢
absorbed or evolved during the reaction or, more generally_. because they
provide a medium for transferring matter from one solid Parthle to another,
A further discussion of the reactions between solids is given in Chapter %

Comparison of the kinetics and mechanism of phase transitions, on the one
hand, and reactions involving liquid or gas phases, on the‘other, sh.ows that therq
are major differences between them. The most striking difference is one of scall:.
Liquid and gas reactions involve only a small number of atoms in each sell~
contained reaction, e.g. reaction of a hydrogen atom and a chlorine atom to form
a molecule of hydrogen chloride:

H +:Cl- HCl

In most phase transitions, however, a much larger number of atoms are m\./olvedt_
in forming a stable nucleus of the product pha§e. For example, in t
transformation of anatase, TiO, to rutile, nuclei of rutile form both a.t the surfa.c 3
and throughout the bulk of the anatase crysta_ls and these_quclel grow with
increasing time. Let us suppose that under a certain set of gondltlons, the smalles
nucleus of rutile capable of independent existence has a diameter of 50 A. Such
nucleus contains about 5000 atoms!

Another difference between gas and solid reactions is that the latter an
strongly influenced by surface effects: nucleation of the product ;_)hase. oft'
oceurs at sites on the surface of the original crystals. The transformation kineti
depend on the total surface area of the original crystals, thc.:refore, and 0
whether, for example, a single crystal or a powdered sample is us'ed. Surfa
effects also control whether or not a nucleus of the produc_t.phase 1s'stal.)le.
discussed above. The surface energy of a nucleus gives a 'posmve contn:nbuuon 1
the free energy and if this more than cancels the decrease in free energy in the b
of the nuclei, then such nuclei are unstable and redissolve. IT‘I contrast, sqrf
are unimportant in gas and liquid reactions unless the reactions occur with
aid of solid catalysts. i

Many other factors influence the kinetics of phase transitions, some of whi
are summarized in Table 12.4. The surface area of the sample has alr.eady b
mentioned as well as the effect of the temperature of study relative (o
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Table 12.4 Factors that influence kinetics of phase transitions

Nature of sample—e.g. single crystal or powder—and surface area
Temperature of kinetic study, relative to equilibrium transition temperature
Activation energy and strength of bonds that are broken

Pre-exponential factor, 4

Change in volume, AV

Pressure, P

Transition mechanism

NoVwELNO—~

equilibrium transition temperature, T, (e.g. Figs 12.8 and 12.13). The effect of
activation energy, E, and the prefactor, A, can be seen from Fig. 12.13. A high
value of A (log A =log kwhen T ™' — 0) ensures rapid rates at high temperatures.
If, at the same time, E is small then these rapid rates extend to lower temperatures.
The value of E gives a measure of the strengths of the bonds that are broken in
order to form the transition state. Hence, major reconstructive transitions have
large E values and are slow whereas minor displacive transitions have much
smaller E values and are rapid.

Transition rates also depend on the difference in volume, AV, between the two
polymorphs. From absolute reaction rate theory,

V*p
log (rate) = constant —

(12.22

where AV* is the difference in volume between the initial polymorph and the
Iransition state.

[t can be seen that the rate decreases with increasing AV. Many transitions are
accomplished under high pressure and equation (12.22) shows that the reaction
rate also decreases with increasing pressure. This has consequences in, for
example, the synthesis of diamond from graphite. Diamond is thermodynamically
stable only at high pressures. The effect of increasing pressure is to increase its
stability, but at the same time its rate of formation in reduced.

The mechanism of transition is a major factor that effects the transition rates,
e.2. compare dilational and reconstructive transition mechanisms in Table 12.1.
Nucleation is the rate limiting step in many transitions and depends on many
luctors, including the nature of the solid (i.e. single crystal or powder), crystal
(efects (i.e. vacancies, dislocations, impurities, etc) and atmosphere. The
difference in crystal structure between the two polymorphs also greatly affects the
case of nucleation. If the structural differences are small and involve changes in
sccond coordination only, then nucleation is very easy. At the other extreme, if
there is no structural similarity between the two phases, nucleation is difficult. An
intermediate class of transitions are topotactic transitions in which a definite
orientation relation exists between the two phases but in which, nevertheless,
considerable structural reorganization is necessary. Examples include transitions



Fig. 12.15 Topotactic mechanism for the transformation f=y in
Li,ZnSi0,. (From West, 1975)

in which the anion arrangement is unchanged thrqugh_out the transmf)l;x. l:lllltt
cation reorganization occurs. In such cases, nucleauoq is modere‘uely‘ c; xsc.o.‘
A topotactic mechanism has been proposed fon" tht’j transition f§ =7in Li,Zn 10,
(Fig. 12.15). f-Li,ZnSiO, has a wurtzite derivative structure with thg cations
ordered over one set of tetrahedral sites in a hexagonal close packed oxide array,
On transformation to y-Li,ZnSiO, the oxygen layers are unchanged apart fx"joml:
a slight buckling, but half the cations move from filled to empty t?fahfz ;‘;
sites. This is represented by inversion of some of thg MO, tetrahedra in 1g.' d 5

An additional factor that is well appreciated in gas phgs_e reactions and ; ‘
likely to be important also in solid state reactions anc.i transitions is the prmcltp v
of microscopic reversibility. This states that, for a reaction that may be represen

simply by

kl
A=B
k ! .
both forward and back reactions occur, with rate constants k, and k_,. In thi
gas phase reactions, this has two consequences. First, the ove'rall rate consta
is given by the difference between k, anq 'k_ - Secpnd,_ reaction cannothgc:i ‘

completion in either direction but an equilibrium situation must be reache
which the rates of forward and back reaction are cqugl. If the ndc_a ol'mncrosqo
reversibility is applicable also to solid state reactions, and it seems entir
reasonable that it should be then an additional constraint must be present. Th
. the first of the above consequences could still apply and the net rate be given
the difference between the rates of forward and bac'k. reaction. However, Il
second consequence could not apply. Unfic'er condmops of thermodyna
equilibrium, solid state reactions and transitions must, in generz_xl, plrocee;l
completion in one direction or another. If not, this would incur a vxolallo‘n. of 1
phase rule. To show this, consider the cxan.lple gf the f=y transmon{'
Li,ZnSiO,, mentioned above. Since Li,ZnSiO, is a congruently melt
thermodynamically stable phase, it may be treated as a one-component Syst
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(C =1) and therefore in the absence of the vapour phase and at ambient pressure,
the system is subject to the condensed phase rule, P + F = C + 1 = 2. Hence the
coexistence of two phases (P = 2) can occur only at a fixed point, T,(F =0). At
all other temperatures, one or other of the polymorphs p, y is stable. Such
considerations have therefore led to the suggestion that in solid state reactions
and transitions microscopic reversibility may be involved, but subject to the
constraint that the phase rule is obeyed and that, in general, reactions proceed to
completion.

12.8 Crystal chemistry and phase transitions

12.8.1 Structural changes with increasing temperature and pressure

From an understanding of the thermodynamic changes that occur at phase
transitions(Fig. 12.4), it is possible to understand, and to a certain degree predict,
the changes in crystal structure that occur at phase transitions. Thermodynamic
considerations tell us that: an increase in volume and entropy accompany first-

order transitions from low temperature to high temperature polymorphs. There are
several structural consequences of this:

(1) High temperature phases have more open structures and often the atoms or
ions have a lower coordination number.

(b) High temperature structures are more disordered.

(¢) High temper .ture structures often have higher symmetry.

A similar set of guidelines may be given for pressure-induced transitons. From
Le Chatelier’s principle, a decrease in volume accompanies first-order transitions
from low pressure to high pressure polymorphs. When the pressure term is not
negligible, a PV term must be included in the Gibbs free energy and at the
[ransition we have:

AG=AU+ PAV—TAS =0
Therefore,

AU+ PAV=TAS

In order to balance a decrease in volume, the internal energy, U, must increase

ind/or the entropy, S, must decrease. The structural consequences of this are,
[herefore:

(1) High pressure phases have more dense structures and often the atoms or ions

have increased coordination number.

(h) High pressure phases have more ordered structures.

On comparing the structural effects of P and T at a transition, we can say that,

(0 u first approximation, the structural consequences of increasing temperature
ire similar to those of decreasing pressure. Quantitative predictions are difficult
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to make, especially with more complex structures, but these guidelines are,
,

nevertheless, very useful.

As examples, for simple AB compounds, the following types of change may be

expected:

incr Tia) wer. Jiby

CsCl structure, CN = 8 —— NaCl structure, CN =6 —~ 7ZnS structure, CN =

‘miﬂul ‘l"_d_ﬁd)
Examples, taken from Rao and Rao (1978), are:

(a) CsCl (479 °C), NH,Br (179°C)

(b) MnS

(c) KCI(19.6 kbar), RbCl (5.7 kbar)
(d) ZnO (88.6 kbars), CdS (17.4 kbar).

For AB, compounds the following sequences are possible:

Distorted rutile structure (cation CN ~ 5, monoclinic)

ner. Tia)
iner. P
(€)

i i — 6, letragonal) S quartz structure (cation
rutile structure (cation CN g )'r1£r . p,

l wer, Tiby (d)

fluorite structure (cation CN = §)

Examples are:

(a) VO,, NbO,
(b) SiO; (120 kbar)
(c) GeO, (1049 °C)

These latter examples are not quite as straigh? forv.vard as for the A.
compounds because coordination numbers may either increase, or decrea

(c) with temperature, but the other guidelines still apply.

12.8.2 Martensitic transformations

Martensitic transformations are a special kind of transformation which oce

in a variety of metallic and non-metallic systems. Martensite was the n

originally given to the hard material obtained during the qt_xench'ing of st.cels-;;
forms by transformation of austenite, the face centred cubic solid solutions

carbon in y-Fe (Fig. 11.20). Austenite is unstable below 723°C and spould, un
equilibrium conditions, decompose to a mixture of a-Fe aqd cgmenute, Fe,C.
quenching austenite, this eutectoid decomposition reaction is suppressed

instead, the undercooled, cubic austenite transforms to a metastable tetrago

phase martensite.
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austenite

B,

4

>

L martensite Dz (b)

Fig. 12.16 Formation of a martensite plate within a parent austenite crystal

The austenite—martensite transformation is depicted in Fig, 12.16. A crystal of
austenite, y-Fe, is shown in Fig. 12.16 (a). Part of the crystal, between the cross-
sections A,B,C,D, and A,B,C,D,, changes shape by a shearing process on
transforming to the martensite structure (Fig. 12.16b). Martensitic transfor-

mations have the following characteristics, some or all of which are usually
observed: !

4)

(#) Transformation occurs by a shearing mechanism to give plates of product
crystal within the parent crystal. At the parent-product interfaces,
A;B,C,D, and A,B,C,D,, which are known as habit planes, the structures
match well and there is a definite orientation relationship between the crystal
structures of the two phases. The sizes of the martensite plates are often large
enough to be seen with an optical microscope.

(h) The parent and product phases have the same composition and their crystal

structures are closely related. Small atomic displacements, often less than one

bond length, are necessary to accomplish the transformation and hence the
transformations do not involve diffusion.

Because there is no activation energy for diffusion involved, the transfor-

mation rates are very high. The parent-product interfaces are said to be

glissile since they can move without thermal activation. Transformation rates
are often independent of temperature, in which case the transformation is
said to be athermal, but may be affected by applied stresses and strains.

(d) Fig. 12.16(b) shows a partly formed martensite crystal. Unlike other phase
transitions, martensitic transformations do not proceed to completion at a
constant temperature but take place over a wide range of temperatures. On
cooling, martensitic transformations begin to occur at a temperature, My,
and the extent of transformation usually depends on the degree of cooling
below Mg. At a certain lower temperature, M, the transition is complete. At
lemperatures between Mg and M,, the degree of transformation can be
increased by applying shearing stresses to the crystal.

{

—

(¢
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(¢) The reverse transformation, e.g. martensite—austenite, can be accomplished
on reheating martensite, but it occurs at temperatures well above M. The
transformation has a large hysteresis (i.e. difference in temperature de-
pendence in the two directions), therefore, which is often as large as several
hundred degrees.

Martensitic transformations have been studied most in alloy systems but are
probably widespread in inorganic systems as well. The dilational rock salt—CsCl
transformation in alkali and ammonium halides (Fig. 12.2) may proceed by &
martensitic mechanism. Probably the most studied martensitic transformation in
non-metallic systems is the monoclinic—tetragonal transformation in zirconia,
ZrO,. Both polymorphs have distorted fluorite structures and the transfors
mation takes place by a diffusionless, shear mechanism over a range of
temperatures around ~ 1000°C, as shown in Fig. 12.17. On heating the
monoclinic phase which is stable at low temperatures, transformation to the
tetragonal phase begins above ~ 1000 °C but is not complete until 2 1120°C,
The transformation exhibits a hysteresis of about 200°C and the reverse
transformation on cooling begins at only 5930 °C. Since the high temperature
tetragonal phase cannot normally be quenched to room temperaturc,‘t
transformation characteristics, as shown in Fig. 12.17, have to be determines
directly at high temperatures. Various methods may be used, including high
temperature X-ray diffraction, dilatometry, resistivity measurements and DT
The transformation is classified as athermal because it takes place over a range
temperatures and the percentage transformation within that range dqes no!
change with time as long as the temperature remains constant. On changing the
temperature, the new ‘equilibrium’ state is reached extremely rapidly; growtl"l 0
the product phase by movement of the coherent interface between monoelini
and tetragonal domains occurs at velocities approaching the speed of sound.

W 100
<
T cooL
T—M
3 !
24800 /
g HEAT
i M—T
& 40
w
.—
N 20
0 A 1 A
600 800 °C 1000 1200

Fig. 12.17 Monoclinic (M)-tetragonal (M

martensitic transformation in zirconia de-

termined by high temperature powder X-ray
diffraction (After Wolten, 1963)
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12.8.3 Order—disorder transitions

Order—disorder transitions have been mentioned in Section 12.2 and, as
examples, the structures of cation ordered and disordered polymorphs of LiFeO,
are given in Fig. 12.3. Order—disorder transitions may be thermodynamically
first order and discontinuous if the long range order in the crystals changes
abruptly at the transition. Alternatively, they may be second order and
continuous if the disordering takes place over a large temperature range and
without any discontinuity at T,. Most transitions have mixed character,
however, and show premonitory disordering as T, is approached from below (or,
equally, do not give a completely ordered phase as the temperature is reduced
below T), together with discontinuities in AH, AS and long range order at T,.

The magnitude of the changes in entropy correlates well with the structural
changes that occur and can often be used to determine the nature of the disorder.
The change in entropy at a transition is made up of contributions from
configurational, rotational, vibrational and electronic effects but usually con-
figurational entropy is the major factor. Its value may be calculated if the
structures of ordered and disordered polymorphs are known, e.g. Agl transforms
from wurtzite-like (f) to a body centred cubic («) structure at 145°C and the
entropy increases by ~ 14.5Jmol™' K~! (Section 13.2.2.1) at the transition.
In B-Agl, the hexagonal unit cell contains two Ag* ions located on specific
tetrahedral sites but in a-Agl, the two Ag* ions are distributed at random
over twelve tetrahedral positons. The change in entropy at the transition is

given by
N
M:kln(ﬂ> =Rln("—’) (12.23)

nl n,

where k is Boltzman's constant, R the gas constant, N Avogadro’s number and
n,,n, the number of configurations in the two polymorphs. In -Agl, an Ag* ion
can be placed in any one of twelve positions but in # Agl, only two positions are
available. Therefore,n, = 12,n, =2and AS=R1In6 = 14.7Jmol 'K " !,in good
ngreement with the experimental value.

Entropy measurements have been particularly useful in evaluating the type of
disorder in orientational order—disorder transitions. For example, crystalline
KCN contains the cigar-shaped CN~ ion. KCN undergoes two transitions with
measured entropies approximately as shown:

83K 168K
11 | (SRR =N |
AS=RIn2 AS=RInd  cybic

For III = I1, n,/n, =2 and the CN ™ ion can adopt two possible orientations in
polymorph II. For I1 -1, n,/n, = 4 and, therefore, CN ™~ can adopt any of eight
orientations. Polymorph I has a CsCl derivative structure and it appears that the
('N ™ atthe cube body centre can orient along any of eight {111 ) body diagonal
directions.

NH,CIl undergoes a phase transition that involves reorientation of the
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Fig. 12.18 Two possible orientations for
NH] ions in phase II of NH,Cl (After Rao
and Rao, 1978)

NH; ions; it was thought originally that free rotation of the NH, ion occurred
in the high temperature phase but entropy measurements indicate that this is .
unlikely. The transition is

I 243K I

_

CsCl derivative 45-Rihn2 CsClderivative
5

In phase I1I, NH; ions at the body centre position of the CsCl structure adopt
the same orientation in all unit cells, e.g. one of the two orientations shown in
Fig. 12.18. In phase II, two different orientations of NH. occur, as in Fig. 12. l'. 4
and these are arranged at random throughout the structure. The measure g'f"
entropy change corresponds to AS = R In 2, indicating two orientations of NHJ
in phase IL If free rotation of NHJ occurred in phase II, a much larger entropy
change would be required. Further polymorphic changes in NH4Cl occur af

higher temperatures.

Questions

12.1 How would you classify the following phase transitions: (a) quart
— cristobalite, SiO, ; (b) rutile — quartz, GeO, ; (¢) tetragonal — monoclini
ZrO,; (d) diamond —graphite; (¢) ferroelectric — paraelectric BaTiO
(Chapter 15). -

12.2 Using the data given in Table 12.2, calculate the entropies of the transitions
(a) low—high quartz; (b) f—a Agl; () monoclinic —cubic Li,SO4
Comment on the relative magnitudes of your results. )

12.3 What kind of structural changes, if any, might you expect the following
undergo as a consequence of (a) increasing temperature, (b) increasin
pressure: (i) SiO,; (i) ZnO; (iii) SnO, (rutile structure); (iv) NH,I? i

12.4 The heat of fusion of tin metalis 61 J gm~'. What is the change in free enerj
when | mole of tin melts at the equilibrium melting temperature? What
the corresponding entropy change? 3
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